The Master Theorem provides a solution to the runtime of divide-and-conquer algorithms of the form T(n)={aT(bn)+kncdif n>1if n=1where a>0,b>1,c≥0,d≥0,k>0 where the solution is T(n)=⎩⎨⎧O(nc)O(nc log n)O(nlogb(a))if a<bcif a=bcif a>bc